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Abstract:Field Programmable Gate Arrays (FPGAs) are 

sensitive to upsets that occur in aerospace. Drastic device 

shrinkage, power supply reduction, and increasing operating 

speeds significantly reduce noise margins and thus reliability; 

hence the rate of transient and intermittent faults is increased in 

modern electronic systems. Improving the fault tolerance of 

reconfigurable devices is increasingly important in domains 

ranging from mission critical embedded applications to the use of 

FPGAs in physically remote environments such as satellites. This 

paper shows the sources of radiation in the space and their effects 

on FPGAs. Also, main mitigation techniques used to recover 

from faults in FPGAs are explored. 

 

Index Terms: Fault-Tolerance, FPGA, Radiation, Faults, 

Redundancy, Scrubbing. 

1. INTRODUCTION 

FPGAs are becoming a popular target for processing and 

communications in space systems. FPGAs provide good 

performance for Digital Signal Processing (DSP) and 

communications applications often used by satellites. The 

reconfiguration capability of FPGAs also allows the circuits 

implemented to be changed in flight for later upgrades, bug 

fixes, and to add extra functionality.  

Like all semiconductor devices, anFPGA can be affected 

by faults at various stages of its lifetime. While most defects 

appear immediately following fabrication, occasionally, after 

extended periods of device use, operational faults can affect 

in-service programmable components[1]. Unfortunately, the 

harsh space environment makes processing using standard 

SRAM based FPGAs difficult. Outside the atmosphere of the 

Earth, there is a large amount of radiation that may interfere 

with the electronics of a spacecraft. Memory cells are 

especially susceptible to the effects of this radiation. Since 

SRAM-based FPGAs are based on large arrays of memory 

cells, they are particularly susceptible to radiation-induced 

upsets, called single event upsets (SEUs). FPGA systems 

exposed to harsh radiation environments, can suffer from 

faults, either transient and/or permanent. Transient faults are 

temporary faults usually caused by Single Event Effects 

(SEEs), and are mitigated via full or partial reconfiguration of 

the configuration memory. Permanent faults can also occur, 

due to the Total Ionizing Dose (TID) the device is exposed to, 

or aging of the device. Permanent faults are mitigated by 

relocation of the application on the FPGA[2]. 

 

2. SOURCES OF RADIATION 

Radiation can be defined as the propagation of energy 

through matter or space. Radiation can be electromagnetic 

waves, or energetic particles.The radiation environment is 

composed of different particles generated from sun and stars 

activities[3]. Energetic particles are particles with energies 

that range from several KeV to GeV and beyond. There are 

main radiation sources and secondary sources as shown in 

Figure 1 and discussed in the following subsections. 

2.1 The PrimarySources 

Trapped Radiation: The Earth’s magnetic field is 

responsible for trapping particles. Since the Earth’s magnetic 

field is not symmetric, this leads to local distortions. Energetic 

particles are trapped magnetically in the Van Allen belts that 

consist of electrons and protons. When a spacecraft passes this 

area, it is exposed to an increased level of radiation [4] [5]. 
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Figure 1: Sources of Radiation. 

 Galactic Cosmic Rays (GCR):These are heavy ions that are 

produced by the explosion of supernovas or collisions 

among celestial bodies outside the solar system and even 

the Milky Way. The charged particles enter the solar 

system from outside, and are composed of protons, 

electrons and fully ionized nuclei[3] [4] [5]. 

 Solar Energetic Particles:Sun activity or solar storms due 

to solar flares, constitute a highly concentrated explosive 

release of the sun’s mass and energy. Particles are heated 

and accelerated in the solar atmosphere. The particles 

consist of protons, electrons and heavy ions[4] [5]. 

2.2 Secondary Radiation 

Radiation generated by the interaction of energetic 

particles with materials. One example is α-particles emitted by 

radioactive isotopes elements found in the silicon wafer or 

packaging material. They have a high probability to generate 

upsets. 

3. RADIATION EFFECTS ON ELECTRONIC DEVICES 

The massive presence of radiations in the space possibly 

causes glitches in the system elaboration. Three main radiation 

effects are observed in the field of electronic components: 

Total Ionizing Dose (TID), Displacement Damage Dose 

(DDD) and Single Event Effect (SEE) as shown in Figure 2. 

3.1 Total Ionizing Dose (TID) 

TID is the dose that is deposited in the electronics through 

ionization effects only. TID effects have the potential to 

destroy the device. TID describes a long-term degradation of 

an electronic component. The degradation is caused by an 

accumulation of energy, which is deposited in the material 

over a long period of time. TID may cause threshold voltage 

shift, static supply leakage and degradation of timing 

parameters.TID is the measure of how much energy has been 

absorbed by the semiconductor. It is measured in rad 

(radiation absorbed dose). 

 

Figure 2: Radiation Effects. 

In general, TID effects can be mitigated through proper 

use of shielding materials. For space-qualified 

Virtex4QVandVirtex-5QVdevices, the TID is of no concern 

since the dose is guaranteed to be 300 Krad for Virtex-4QV 

devices, 1 Mrad for Virtex-5QV devices[4] [6]. 

3.2 Displacement Damage Dose (DDD) 

The second area of the cumulative effects of radiation is 

the displacement effects. DDD is caused by highly energetic 

particles (protons and neutrons). When the high-energy 

particles strike the atoms, they may penetrate into the crystal 

lattice of the silicon.In this case, the atomsare "displaced" 

from their position to various locations. Unless the end 

location is an exact duplicate of the former position, the 

regular order of the crystalline lattice is disturbed. The 

resulting crystal contains empty positions of knocked-out 

atoms, which are clustered elsewhere in the crystal. These 

places are sources of problems, as they serve as recombination 

centers. As in the TID effect, the degradation is long-term and 

often has similar long-term degradation characteristics, 

although it is based on different physical mechanism. In 

general, displacement effects are also mitigated through 

proper use of shielding materials[5] [6]. 

3.3 Single Event Effects (SEE) 

SEEs are effects caused by a single, energetic particle 

radiation on an electronic circuit, which causes transient errors 
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and it can take on many forms. These effects are classified as 

non-destructive and destructive faults. Non-destructive faults 

(soft faults) include single event upsets (SEU), and single 

event transients (SET). Destructive faults include single event 

latch up (SEL), single event burnout (SEB),single event 

functional interrupt (SEFI), and single event gate rupture 

(SEGR). Destructive faults cause permanent damage if no 

appropriate mitigation technique is used[5] [7]. 

 SEU is a special case of SEE, where the sudden 

conductance of the transistor (results from ionization by an 

energetic particle) may result in bit flip in the configuration 

bits that control the routing, logic behavior, and other 

critical aspects of the FPGA designs[8]. The change is not 

permanent and is easily recovered by writing a new value 

or by resetting the FPGA. SEU is the most common effect 

for SRAM-based FPGAs as it may affect the configuration 

memory as well as memory cells that are used as part of 

the user logic (flip-flops, embedded RAM) [4]. 

 SET is a transient effect that can be observed as a 

current/voltage spike, or a short pulse on the clock or data 

net. It affects both analog and digital components. The 

device can continue normal operation thereafter. If this 

transient effect passes through a memory cell at the same 

moment that the cell is capturing and storing its input, the 

result is the same as an SEU. 

 SEFI is a type of SEU that may cause the circuit to stop 

operating, where the SEU affect the control logic. A loss of 

control over the device is often observed. SEU 

susceptibility of the control logic, JTAG, and dedicated 

ports for configuration downloading are the main source of 

SEFI. The error can be corrected by rewriting the original 

information which might involve hard reboot (power 

cycle) or soft reboot (software restart) 

 SEL is potentially destructive. SEL results in a high 

operating current, above device specifications. This state 

can be released only by power reset. The latch-up can be 

detected by the increased device current. The current 

density or the local overheating may destroy the device, 

especially when the current is not limited. Similar to the 

TID effect, SELs are of no concern for Virtex-4QV and 

Virtex-5QV devices since both devices have high 

guaranteed latch-up immunity [4] [5] [7]. 

Non-destructive SEEs are recovered by resetting or 

reconfiguring the FPGA, whereas destructive SEEs have a 

permanent effect and must be mitigated by relocating the 

design on a new unused area of the FPGA. 

4. AGING EFFECTS 

Beside radiation effects, device aging can have major 

effects especially for long lasting space missions, where 

maintenance or substitution is very difficult. Aging effects are 

destructive and are classified as follows[9]: 

 Time Dependent Dielectric Breakdown (TDDB): If the 

leakage current is increased, it causes a breakdown and 

eventually a short circuit because of the charge trapping 

within the gate dielectrics. 

 Electro-Migration (EM):  It is a development of voids in 

metal lines due to heavy current densities over a period of 

time. This can cause faults due to the creation of open 

and/or short circuits. 

 Hot-Carrier Effects (HCE): This is an effect that leads to a 

buildup of trapped charges in the gate-channel interface 

region. HCE causes increase in threshold voltage and 

gradual reduction in the channel mobility. This effect 

makes the switching speed slow, and causes delay faults. 

 Negative Bias Temperature Instability (NBTI):This is the 

degradation dependent on the time a PMOS transistor is 

stressed in the circuit. NBTI leads to delay faults as in 

HCE. 

The Fault types due to the previous effects can be 

summarized inFigure 3. 

 

Figure 3: Fault Causes and Types. 

5. FAULT MODES IN SRAM-BASED FPGAS 

SRAM-based FPGAs encompass a configuration memory 

layer, which stores the configuration (bitstream) of the FPGA 

in SRAM memory cells that define the functionality 

performed by the FPGA, and a user logic layer where the 

actual circuit design is implemented and the application data is 

being processed are stored. 

The bitstream on the configuration memory controls the 

resources implemented by the FPGA, including the routing 

between the resources, the LUTs content (combinational part 

of the design) and the configuration of the block random 

access memory (BRAM), configurable logic blocks(CLB), 

digital signal processing blocks (DSP) and input/output blocks 

(IOB) blocks. 
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 If a particle strikes the FPGA, it may affect memory 

resources including the configuration memory and the user 

logic layer. Upsets are seen as faults that may cause a failure. 

The system is fortunately recovered from such failures by 

updating the memory cells with the correct values. Since the 

configuration bits (bitstream) control nearly everything, the 

configuration memory is the main concern of most mitigation 

techniques [4] [10]. The fault modes in FPGA are: 

 Fault in Configuration memory: A SEU in the 

configuration memory can change the logic implemented 

on the FPGA and hence alters the function and goals of the 

circuit. In Xilinx terminology configuration memory bits 

range from unused bits to critical bits as shown inFigure 4. 

The designer of the system can decide which bits are 

critical. Critical bits must be guaranteed to be masked or 

recoverable from failures[11]. 

 

Figure 4: Configuration Bits Classification. 

 A fault in a user flip-flop may cause a failure if its value is 

used by subsequent circuitry. The failure can be measured 

at the output if it is propagated through the system 

although it is often transient failure. If the failure is trapped 

in a feedback loop the logic must be reset to an initial state. 

 A fault in a Block RAM cell may cause a failure in the 

next read access. Often, the memory is not accessed 

immediately and the failure demonstration is delayed. 

 

6. MITIGATION TECHNIQUES CLASSIFICATION 

Fault Management Handbook[12] stated that failures can 

be mitigated by five different techniques; hence failures can be 

prevented or tolerated. The main techniques are fault 

avoidance which is divided into two techniques, and fault 

tolerance which is classified into three techniques as shown in 

Figure 5. In the fault avoidance (prevention), actions are taken 

to prevent failures from occurring either at design time or at 

run time, whereas in fault tolerance actions are taken to detect 

and/or correct faults after their occurrence. 

6.1 Fault Avoidance 

     Design-Time Fault Avoidance: Minimizes the risk of a 

fault and its resulting failure during design by using, for 

example, high quality parts, or high QA processes. 

     Operational Failure Avoidance: Predicts that a failure 

may occur in the future during operation and takes action 

to prevent or delay it from occurring, for example, by 

maintenance or operational change. 

6.2 Fault Tolerance 

If faults cannot be avoided, other possibilities of improving 

the levels of reliability should be searched. Thepossible 

occurrence of faults is taken into account in the design and 

implementation of the system so that defects will show only a 

minimal impact on the system. This type of reaction to the 

faults is referred to as fault tolerance. A system that reacts in 

this way is called a fault tolerant system[13]. 

 

Figure 5: Fault Mitigation Techniques 

 Failure Masking Techniques: When a failure occurs, its 

effect is masked so it doesn’t affect the system function. 

 Failure Recovery Techniques: A failure may temporarily 

affect the system function, but a recovery process is 

performed before the failure affects the system goal. 

 Goal Change Strategies:  A failure may temporarily affect 

the system function, and a responseis achieved by 

changing the system’s goals to degraded goals. 
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7. FAULT TOLERANCE TECHNIQUES IN SRAM-BASED 

FPGAS 

Two famous techniques are used in SRAMFPGAs: fault 

masking compromising some form of redundancy, and fault 

recovery by reconfiguration. 

7.1 Periodic Reconfiguration (Scrubbing) 

Periodic reconfiguration known as scrubbing is a method 

for mitigating SEUs in the configuration memory by 

continuously rewriting the original configuration. It can also 

be used for preventing the accumulation of failures to improve 

the reliability of the FPGA. There are 4 major scrubbing 

implementations: Blind vs. Readback Scrubbing, Device vs. 

Frame-Oriented Scrubbing, Periodic vs. On-Demand 

Scrubbing, and External vs. Internal Scrubbing[4]. 

7.1.1 Blind vs. Readback Scrubbing: 

The most basic scrubbing technique is the blind scrubbing 

where the configuration memory is re-written at chosen 

intervals with a good copy of the original configuration bits. 

This copy is known as the ’golden copy’. The golden copy is 

stored in an external, hardened memory. A controller is used 

to control the downloading of the golden copy via one of the 

configuration interfaces of the FPGA. Blind scrubbing 

requires little system overhead since it updates the system 

whether there is fault or not. For the same reason, it can be 

classified as operational fault avoidance technique. SEFI 

detection is done before each re-write access.  

In the readback feature the configuration memory is read 

to detect faults. If faults are detected, the golden copy is re-

written. This scrubbing technique can be classified as a failure 

recovery technique.One detection technique is based on 

comparison where the configuration memory is readback and 

compared with the golden copy. Comparison may be done by 

bit-wise comparison, or by computing a Cyclic Redundancy 

Check (CRC) checksum during the readback process then it 

can be compared with the CRC of the golden copy. The 

second detection technique is based on information 

redundancy using Error-Correcting Code (ECC). Single Error 

Correction and Double Error Detection (SEC/DED) code can 

detect up two faults and correct a single fault. If there are more 

than two faults, the syndrome is indeterminate and faults can’t 

be detected. The syndrome is computed during the readback 

process. According to its value, faults are detected and maybe 

localized in the case of correction[4] [6]. The methodology 

described in [14] use blind periodic scrubbing, while that in 

[15] use readback scrubbing technique by comparing the 

golden copy with the readback copy. 

7.1.2 Device vs. Frame-based Scrubbing 

The configuration memory can be scrubbed with the full 

bitstream or scrubbed by frames. Full scrubbing is known as 

device-based scrubbing. Its implementation is simple by 

downloading the golden copy from a memory to the 

configuration interface. The main disadvantage is the 

possibility of the SEFIs to occur. If this happens during the 

bitstream download, the whole design can be corrupted.  

To reduce the SEFIs effect, frame-based scrubbing is used 

to isolate it to a single frame. Frame-based scrubbing is more 

complex. It requires the configuration controller to prepare 

each frame before download. There are some drawbacks of the 

frame-based scrubbing. First the scrubbing speed is decreased 

because a SEFI check must be done for each frame. Second, 

the overhead is increased because each frame bitstream has its 

header. The frame-based technique is used in [14]. 

7.1.3 Periodic vs. On-Demand Scrubbing 

When scrubbing is independent of any other mitigation 

techniques, the configuration memory is periodically 

scrubbed, and scanned for faults at a fixed rate.In other 

designs, a mitigation technique is used to detect faults and 

trigger the scrubbing process. These designs are known as on-

demand scrubbing. On-demand scrubbing has the advantage 

of power saving hence the scrubbing component remains idle 

until trigger. In many researches on-demand scrubbing is 

mentioned as dynamic partial reconfiguration[16] [17]. 

7.1.4 External vs. Internal Scrubbing 

The scrubbing circuit may be implemented internally on 

the user logic layer or externally. If external scrubbing is used, 

the SelectMAP interface is commonly used because it has high 

throughput rate[18]. If internal scrubbing is used, ICAP can be 

used[16]. Although internal scrubbing is low cost and simple 

implementation since it does not require an external controller 

or hardened memory to store the golden copy of the bitstream, 

external scrubbing is more robust and recommended by 

Xilinx[4].  

7.2 Redundancy Techniques 

Redundancy-based fault tolerance strategies employ a 

predetermined additional set of physical resources such as hot 

or cold spares at fixed granularity[18]. When a fault is 

detected they supply a prearranged replacement to recover 

from it[19]. Redundancy can be provided by extra components 

(hardware redundancy), by an additional execution time or 

different instants of data sampling (time redundancy), or by 

additional code segments (software redundancy) [20]. 

7.2.1 Hardware Redundancy 

Modular hardware redundancy is the most popular 

approach to achieve the required reliability and the timing 

constraints. In Modular Redundancy multiples of replicas are 

used for the same module. An N- modular redundancy (NMR) 
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system replicates a design into N-modules and uses voter to 

select the correct output. Hence, for NMR it is possible to 

tolerate the fault as long as it happens in no more than (N/2) 

modules[21]. 

 Triple Modular Redundancy (TMR): The circuit is 

triplicated and a majority vote is used to choose the correct 

output. Since the voter is susceptible to upsets it is 

triplicated too as shown inFigure 6 and Figure 7 

respectively. 

 

Figure 6: Basic TMR. 

 

Figure 7:TMR with Repeated Voter. 

TMR can detect and correct only single error for the whole 

circuit. To decrease the area that has upset and avoid the 

propagation of errors, the circuit can be partitioned to 

modules and adding additional voters for every module set 

as shown in Figure 8. 

TMR has the disadvantage of high area overhead 

since the circuit as triplicated. If all the redundant modules 

are hot the design suffers also from higher power 

dissipation and increased temperature. TMR technique is 

used in many researches [21] [22] [23] [24]. 

 
(a) BasicTMR for Moduled System. 

 

(b) TMR with Repeated Voter for Moduled system. 

Figure 8: TMR for Module System. 

 Duplication with Comparison (DWC): DWC is used to 

reduce the area overhead in the TMR. The circuit is 

duplicated and the output is compared as shown in Figure 

9. DWC can only detect the error without correcting it, so a 

recovery technique must be used beside it to correct the 

fault.A common recovery technique used in companion 

with DWC is the on-demand scrubbing. Work in [25] uses 

the DWC technique along with dynamic partial 

reconfiguration to increase the reliability of the design. 

 

Figure 9: DWC Implementation. 

 Standby Sparing: One of the modules is used to provide the 

output, and the remaining modules work as spares (active 

or passive). An error detection technique is used to identify 

faulty modules and a fault-free module is selected to 

provide the output as shown in Figure 10[26]. 

     Pair and Spare: This technique combines DWC and 

standby sparing. Two modules are online and compared as 

in DWC, and any spare can replace either of the online 

modules, as shown in Figure 11[27].  

 

Figure 10: Standby Sparing Implementation. 
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Figure 11: Pair and Spare Scheme. 

     Self-Purging: The correct output is compared with the 

output of each module to identify the faulty modules for 

NMR with N>2 as shown in Figure 12[27]. 

 

Figure 12: Self-Purging Scheme. 

 

The main drawback of error detection using hardware 

redundancy is the area overhead. Also, it provides a limited 

resolution to identify the faulty module unless using extra 

logic for this purpose[9]. 

7.2.2 Time Redundancy 

Time redundancy techniques rely on the advantage of the 

transient fault by comparing the output signals at two different 

moments. The output is latched at two or more different times, 

where the clock edge of each latch is shifted by time das 

shown in Figure 13. A comparator or a voter indicates the 

occurrence of transient fault[20]. Time redundancy along with 

DWC is used in [28]. 

The area overhead in time redundancy comes from the 

added sample latches. Also, the performance is affected. The 

performance penalty is given by clk+(N-1)d+tp, where 

ddenotes the expected duration of the transient pulse , N is the 

number of latched times and tp is the majority voter delay 

[20]. 

 

 

Figure 13: Time Redundancy Implementation. 

7.2.3 Information Redundancy 

Information redundancy depends on the use of EDAC 

(Error Detecting and Correcting Codes) by adding extra 

bits.These bits help in detecting and localizing the errors, and 

hence, correcting them using unique syndrome calculation. 

The block diagram of EDAC is shown in Figure 14. 

Information redundancy is mostly used to tolerate faults in 

FSM (Finite State Machine) and the data stored in the BRAM 

(Block RAM). There are many techniques to implement 

EDAC. The most famous codes are: 

 Parity bits: The simplest coding technique used, can be 

implemented simply using XOR gates. It is rarely used 

alone because it is weak[27]. 

 Hamming Codes: This code adds c check bits and can 

detect multiple faults and may correct a smaller number of 

faults depending on the hamming distance. The most 

famous type is the single error correction/double detection 

code[20] [27]. 

 Rectangular Codes: These codes require more 

computations than Hamming codes, but it is suitable for 

data stored as a matrix. Parity bits are generated for both 

horizontal and vertical data. These codes are used in ABFT 

(Algorithm-Based Fault Tolerance). 

 Reed-Solomon Codes: used to detect/correct multiple 

faults, but decoding and encoding circuits are very 

complex compared to Hamming codes[20]. 

 Cyclic Redundancy Codes (CRC): Blocks of data get a 

short check value attached to them, based on the remainder 

of a polynomial division of the contents. On retrieval, these 

calculation is repeated and, in the case the check values do 

not match, corrective action can be taken against data 

corruption. CRC is usually used in rollback scrubbing [29]. 

 

https://en.wikipedia.org/wiki/Polynomial_long_division
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Figure 14: Block Diagram of EDAC. 

8. CONCLUSION 

This paper has listed the main sources of faults in FPGA 

systems. Both radiation and aging effects are explained 

briefly. The presented survey showed different fault-tolerance 

techniques that can be used to mitigate either permanent or 

transient faults. There is no single mitigation technique that is 

significantly better than the others. Thus, mixing between two 

or more techniques maybe used for highly reliable systems. 
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