
IEEE#41458-ACCS'017&PEIT'017, Alexandria, Egypt

A SURVEY ONFAULTS AND MITIGATION TECHNIQUES

IN FPGAS

Radwa M. Tawfeek

Benha Faculty of Engineering

 Benha University

 Benha, Egypt

radwa.tawfeek@bhit.bu.edu.eg.

Mohamed G. Egila

Electronics Research Institute

Cairo, Egypt

mohamed.gamal@eri.sci.eg

Yousra Alkabani and I. M. Hafez

Faculty of Engineering

 Ain Shams University

Cairo, Egypt

yousra.alkabani@eng.asu.edu.eg,ismail_hafez@eng.asu.edu.eg

Abstract:Field Programmable Gate Arrays (FPGAs) are

sensitive to upsets that occur in aerospace. Drastic device

shrinkage, power supply reduction, and increasing operating

speeds significantly reduce noise margins and thus reliability;

hence the rate of transient and intermittent faults is increased in

modern electronic systems. Improving the fault tolerance of

reconfigurable devices is increasingly important in domains

ranging from mission critical embedded applications to the use of

FPGAs in physically remote environments such as satellites. This

paper shows the sources of radiation in the space and their effects

on FPGAs. Also, main mitigation techniques used to recover

from faults in FPGAs are explored.

Index Terms: Fault-Tolerance, FPGA, Radiation, Faults,

Redundancy, Scrubbing.

1. INTRODUCTION

FPGAs are becoming a popular target for processing and

communications in space systems. FPGAs provide good

performance for Digital Signal Processing (DSP) and

communications applications often used by satellites. The

reconfiguration capability of FPGAs also allows the circuits

implemented to be changed in flight for later upgrades, bug

fixes, and to add extra functionality.

Like all semiconductor devices, anFPGA can be affected

by faults at various stages of its lifetime. While most defects

appear immediately following fabrication, occasionally, after

extended periods of device use, operational faults can affect

in-service programmable components[1]. Unfortunately, the

harsh space environment makes processing using standard

SRAM based FPGAs difficult. Outside the atmosphere of the

Earth, there is a large amount of radiation that may interfere

with the electronics of a spacecraft. Memory cells are

especially susceptible to the effects of this radiation. Since

SRAM-based FPGAs are based on large arrays of memory

cells, they are particularly susceptible to radiation-induced

upsets, called single event upsets (SEUs). FPGA systems

exposed to harsh radiation environments, can suffer from

faults, either transient and/or permanent. Transient faults are

temporary faults usually caused by Single Event Effects

(SEEs), and are mitigated via full or partial reconfiguration of

the configuration memory. Permanent faults can also occur,

due to the Total Ionizing Dose (TID) the device is exposed to,

or aging of the device. Permanent faults are mitigated by

relocation of the application on the FPGA[2].

2. SOURCES OF RADIATION

Radiation can be defined as the propagation of energy

through matter or space. Radiation can be electromagnetic

waves, or energetic particles.The radiation environment is

composed of different particles generated from sun and stars

activities[3]. Energetic particles are particles with energies

that range from several KeV to GeV and beyond. There are

main radiation sources and secondary sources as shown in

Figure 1 and discussed in the following subsections.

2.1 The PrimarySources

Trapped Radiation: The Earth’s magnetic field is

responsible for trapping particles. Since the Earth’s magnetic

field is not symmetric, this leads to local distortions. Energetic

particles are trapped magnetically in the Van Allen belts that

consist of electrons and protons. When a spacecraft passes this

area, it is exposed to an increased level of radiation [4] [5].

mailto:radwa.tawfeek@bhit.bu.edu.eg
mailto:mohamed.gamal@eri.sci.eg
mailto:yousra.alkabani@eng.asu.edu.eg
mailto:ismail_hafez@eng.asu.edu.eg

IEEE#41458-ACCS'017&PEIT'017, Alexandria, Egypt

Figure 1: Sources of Radiation.

 Galactic Cosmic Rays (GCR):These are heavy ions that are

produced by the explosion of supernovas or collisions

among celestial bodies outside the solar system and even

the Milky Way. The charged particles enter the solar

system from outside, and are composed of protons,

electrons and fully ionized nuclei[3] [4] [5].

 Solar Energetic Particles:Sun activity or solar storms due

to solar flares, constitute a highly concentrated explosive

release of the sun’s mass and energy. Particles are heated

and accelerated in the solar atmosphere. The particles

consist of protons, electrons and heavy ions[4] [5].

2.2 Secondary Radiation

Radiation generated by the interaction of energetic

particles with materials. One example is α-particles emitted by

radioactive isotopes elements found in the silicon wafer or

packaging material. They have a high probability to generate

upsets.

3. RADIATION EFFECTS ON ELECTRONIC DEVICES

The massive presence of radiations in the space possibly

causes glitches in the system elaboration. Three main radiation

effects are observed in the field of electronic components:

Total Ionizing Dose (TID), Displacement Damage Dose

(DDD) and Single Event Effect (SEE) as shown in Figure 2.

3.1 Total Ionizing Dose (TID)

TID is the dose that is deposited in the electronics through

ionization effects only. TID effects have the potential to

destroy the device. TID describes a long-term degradation of

an electronic component. The degradation is caused by an

accumulation of energy, which is deposited in the material

over a long period of time. TID may cause threshold voltage

shift, static supply leakage and degradation of timing

parameters.TID is the measure of how much energy has been

absorbed by the semiconductor. It is measured in rad

(radiation absorbed dose).

Figure 2: Radiation Effects.

In general, TID effects can be mitigated through proper

use of shielding materials. For space-qualified

Virtex4QVandVirtex-5QVdevices, the TID is of no concern

since the dose is guaranteed to be 300 Krad for Virtex-4QV

devices, 1 Mrad for Virtex-5QV devices[4] [6].

3.2 Displacement Damage Dose (DDD)

The second area of the cumulative effects of radiation is

the displacement effects. DDD is caused by highly energetic

particles (protons and neutrons). When the high-energy

particles strike the atoms, they may penetrate into the crystal

lattice of the silicon.In this case, the atomsare "displaced"

from their position to various locations. Unless the end

location is an exact duplicate of the former position, the

regular order of the crystalline lattice is disturbed. The

resulting crystal contains empty positions of knocked-out

atoms, which are clustered elsewhere in the crystal. These

places are sources of problems, as they serve as recombination

centers. As in the TID effect, the degradation is long-term and

often has similar long-term degradation characteristics,

although it is based on different physical mechanism. In

general, displacement effects are also mitigated through

proper use of shielding materials[5] [6].

3.3 Single Event Effects (SEE)

SEEs are effects caused by a single, energetic particle

radiation on an electronic circuit, which causes transient errors

IEEE#41458-ACCS'017&PEIT'017, Alexandria, Egypt

and it can take on many forms. These effects are classified as

non-destructive and destructive faults. Non-destructive faults

(soft faults) include single event upsets (SEU), and single

event transients (SET). Destructive faults include single event

latch up (SEL), single event burnout (SEB),single event

functional interrupt (SEFI), and single event gate rupture

(SEGR). Destructive faults cause permanent damage if no

appropriate mitigation technique is used[5] [7].

 SEU is a special case of SEE, where the sudden

conductance of the transistor (results from ionization by an

energetic particle) may result in bit flip in the configuration

bits that control the routing, logic behavior, and other

critical aspects of the FPGA designs[8]. The change is not

permanent and is easily recovered by writing a new value

or by resetting the FPGA. SEU is the most common effect

for SRAM-based FPGAs as it may affect the configuration

memory as well as memory cells that are used as part of

the user logic (flip-flops, embedded RAM) [4].

 SET is a transient effect that can be observed as a

current/voltage spike, or a short pulse on the clock or data

net. It affects both analog and digital components. The

device can continue normal operation thereafter. If this

transient effect passes through a memory cell at the same

moment that the cell is capturing and storing its input, the

result is the same as an SEU.

 SEFI is a type of SEU that may cause the circuit to stop

operating, where the SEU affect the control logic. A loss of

control over the device is often observed. SEU

susceptibility of the control logic, JTAG, and dedicated

ports for configuration downloading are the main source of

SEFI. The error can be corrected by rewriting the original

information which might involve hard reboot (power

cycle) or soft reboot (software restart)

 SEL is potentially destructive. SEL results in a high

operating current, above device specifications. This state

can be released only by power reset. The latch-up can be

detected by the increased device current. The current

density or the local overheating may destroy the device,

especially when the current is not limited. Similar to the

TID effect, SELs are of no concern for Virtex-4QV and

Virtex-5QV devices since both devices have high

guaranteed latch-up immunity [4] [5] [7].

Non-destructive SEEs are recovered by resetting or

reconfiguring the FPGA, whereas destructive SEEs have a

permanent effect and must be mitigated by relocating the

design on a new unused area of the FPGA.

4. AGING EFFECTS

Beside radiation effects, device aging can have major

effects especially for long lasting space missions, where

maintenance or substitution is very difficult. Aging effects are

destructive and are classified as follows[9]:

 Time Dependent Dielectric Breakdown (TDDB): If the

leakage current is increased, it causes a breakdown and

eventually a short circuit because of the charge trapping

within the gate dielectrics.

 Electro-Migration (EM): It is a development of voids in

metal lines due to heavy current densities over a period of

time. This can cause faults due to the creation of open

and/or short circuits.

 Hot-Carrier Effects (HCE): This is an effect that leads to a

buildup of trapped charges in the gate-channel interface

region. HCE causes increase in threshold voltage and

gradual reduction in the channel mobility. This effect

makes the switching speed slow, and causes delay faults.

 Negative Bias Temperature Instability (NBTI):This is the

degradation dependent on the time a PMOS transistor is

stressed in the circuit. NBTI leads to delay faults as in

HCE.

The Fault types due to the previous effects can be

summarized inFigure 3.

Figure 3: Fault Causes and Types.

5. FAULT MODES IN SRAM-BASED FPGAS

SRAM-based FPGAs encompass a configuration memory

layer, which stores the configuration (bitstream) of the FPGA

in SRAM memory cells that define the functionality

performed by the FPGA, and a user logic layer where the

actual circuit design is implemented and the application data is

being processed are stored.

The bitstream on the configuration memory controls the

resources implemented by the FPGA, including the routing

between the resources, the LUTs content (combinational part

of the design) and the configuration of the block random

access memory (BRAM), configurable logic blocks(CLB),

digital signal processing blocks (DSP) and input/output blocks

(IOB) blocks.

IEEE#41458-ACCS'017&PEIT'017, Alexandria, Egypt

 If a particle strikes the FPGA, it may affect memory

resources including the configuration memory and the user

logic layer. Upsets are seen as faults that may cause a failure.

The system is fortunately recovered from such failures by

updating the memory cells with the correct values. Since the

configuration bits (bitstream) control nearly everything, the

configuration memory is the main concern of most mitigation

techniques [4] [10]. The fault modes in FPGA are:

 Fault in Configuration memory: A SEU in the

configuration memory can change the logic implemented

on the FPGA and hence alters the function and goals of the

circuit. In Xilinx terminology configuration memory bits

range from unused bits to critical bits as shown inFigure 4.

The designer of the system can decide which bits are

critical. Critical bits must be guaranteed to be masked or

recoverable from failures[11].

Figure 4: Configuration Bits Classification.

 A fault in a user flip-flop may cause a failure if its value is

used by subsequent circuitry. The failure can be measured

at the output if it is propagated through the system

although it is often transient failure. If the failure is trapped

in a feedback loop the logic must be reset to an initial state.

 A fault in a Block RAM cell may cause a failure in the

next read access. Often, the memory is not accessed

immediately and the failure demonstration is delayed.

6. MITIGATION TECHNIQUES CLASSIFICATION

Fault Management Handbook[12] stated that failures can

be mitigated by five different techniques; hence failures can be

prevented or tolerated. The main techniques are fault

avoidance which is divided into two techniques, and fault

tolerance which is classified into three techniques as shown in

Figure 5. In the fault avoidance (prevention), actions are taken

to prevent failures from occurring either at design time or at

run time, whereas in fault tolerance actions are taken to detect

and/or correct faults after their occurrence.

6.1 Fault Avoidance

 Design-Time Fault Avoidance: Minimizes the risk of a

fault and its resulting failure during design by using, for

example, high quality parts, or high QA processes.

 Operational Failure Avoidance: Predicts that a failure

may occur in the future during operation and takes action

to prevent or delay it from occurring, for example, by

maintenance or operational change.

6.2 Fault Tolerance

If faults cannot be avoided, other possibilities of improving

the levels of reliability should be searched. Thepossible

occurrence of faults is taken into account in the design and

implementation of the system so that defects will show only a

minimal impact on the system. This type of reaction to the

faults is referred to as fault tolerance. A system that reacts in

this way is called a fault tolerant system[13].

Figure 5: Fault Mitigation Techniques

 Failure Masking Techniques: When a failure occurs, its

effect is masked so it doesn’t affect the system function.

 Failure Recovery Techniques: A failure may temporarily

affect the system function, but a recovery process is

performed before the failure affects the system goal.

 Goal Change Strategies: A failure may temporarily affect

the system function, and a responseis achieved by

changing the system’s goals to degraded goals.

IEEE#41458-ACCS'017&PEIT'017, Alexandria, Egypt

7. FAULT TOLERANCE TECHNIQUES IN SRAM-BASED

FPGAS

Two famous techniques are used in SRAMFPGAs: fault

masking compromising some form of redundancy, and fault

recovery by reconfiguration.

7.1 Periodic Reconfiguration (Scrubbing)

Periodic reconfiguration known as scrubbing is a method

for mitigating SEUs in the configuration memory by

continuously rewriting the original configuration. It can also

be used for preventing the accumulation of failures to improve

the reliability of the FPGA. There are 4 major scrubbing

implementations: Blind vs. Readback Scrubbing, Device vs.

Frame-Oriented Scrubbing, Periodic vs. On-Demand

Scrubbing, and External vs. Internal Scrubbing[4].

7.1.1 Blind vs. Readback Scrubbing:

The most basic scrubbing technique is the blind scrubbing

where the configuration memory is re-written at chosen

intervals with a good copy of the original configuration bits.

This copy is known as the ’golden copy’. The golden copy is

stored in an external, hardened memory. A controller is used

to control the downloading of the golden copy via one of the

configuration interfaces of the FPGA. Blind scrubbing

requires little system overhead since it updates the system

whether there is fault or not. For the same reason, it can be

classified as operational fault avoidance technique. SEFI

detection is done before each re-write access.

In the readback feature the configuration memory is read

to detect faults. If faults are detected, the golden copy is re-

written. This scrubbing technique can be classified as a failure

recovery technique.One detection technique is based on

comparison where the configuration memory is readback and

compared with the golden copy. Comparison may be done by

bit-wise comparison, or by computing a Cyclic Redundancy

Check (CRC) checksum during the readback process then it

can be compared with the CRC of the golden copy. The

second detection technique is based on information

redundancy using Error-Correcting Code (ECC). Single Error

Correction and Double Error Detection (SEC/DED) code can

detect up two faults and correct a single fault. If there are more

than two faults, the syndrome is indeterminate and faults can’t

be detected. The syndrome is computed during the readback

process. According to its value, faults are detected and maybe

localized in the case of correction[4] [6]. The methodology

described in [14] use blind periodic scrubbing, while that in

[15] use readback scrubbing technique by comparing the

golden copy with the readback copy.

7.1.2 Device vs. Frame-based Scrubbing

The configuration memory can be scrubbed with the full

bitstream or scrubbed by frames. Full scrubbing is known as

device-based scrubbing. Its implementation is simple by

downloading the golden copy from a memory to the

configuration interface. The main disadvantage is the

possibility of the SEFIs to occur. If this happens during the

bitstream download, the whole design can be corrupted.

To reduce the SEFIs effect, frame-based scrubbing is used

to isolate it to a single frame. Frame-based scrubbing is more

complex. It requires the configuration controller to prepare

each frame before download. There are some drawbacks of the

frame-based scrubbing. First the scrubbing speed is decreased

because a SEFI check must be done for each frame. Second,

the overhead is increased because each frame bitstream has its

header. The frame-based technique is used in [14].

7.1.3 Periodic vs. On-Demand Scrubbing

When scrubbing is independent of any other mitigation

techniques, the configuration memory is periodically

scrubbed, and scanned for faults at a fixed rate.In other

designs, a mitigation technique is used to detect faults and

trigger the scrubbing process. These designs are known as on-

demand scrubbing. On-demand scrubbing has the advantage

of power saving hence the scrubbing component remains idle

until trigger. In many researches on-demand scrubbing is

mentioned as dynamic partial reconfiguration[16] [17].

7.1.4 External vs. Internal Scrubbing

The scrubbing circuit may be implemented internally on

the user logic layer or externally. If external scrubbing is used,

the SelectMAP interface is commonly used because it has high

throughput rate[18]. If internal scrubbing is used, ICAP can be

used[16]. Although internal scrubbing is low cost and simple

implementation since it does not require an external controller

or hardened memory to store the golden copy of the bitstream,

external scrubbing is more robust and recommended by

Xilinx[4].

7.2 Redundancy Techniques

Redundancy-based fault tolerance strategies employ a

predetermined additional set of physical resources such as hot

or cold spares at fixed granularity[18]. When a fault is

detected they supply a prearranged replacement to recover

from it[19]. Redundancy can be provided by extra components

(hardware redundancy), by an additional execution time or

different instants of data sampling (time redundancy), or by

additional code segments (software redundancy) [20].

7.2.1 Hardware Redundancy

Modular hardware redundancy is the most popular

approach to achieve the required reliability and the timing

constraints. In Modular Redundancy multiples of replicas are

used for the same module. An N- modular redundancy (NMR)

IEEE#41458-ACCS'017&PEIT'017, Alexandria, Egypt

system replicates a design into N-modules and uses voter to

select the correct output. Hence, for NMR it is possible to

tolerate the fault as long as it happens in no more than (N/2)

modules[21].

 Triple Modular Redundancy (TMR): The circuit is

triplicated and a majority vote is used to choose the correct

output. Since the voter is susceptible to upsets it is

triplicated too as shown inFigure 6 and Figure 7

respectively.

Figure 6: Basic TMR.

Figure 7:TMR with Repeated Voter.

TMR can detect and correct only single error for the whole

circuit. To decrease the area that has upset and avoid the

propagation of errors, the circuit can be partitioned to

modules and adding additional voters for every module set

as shown in Figure 8.

TMR has the disadvantage of high area overhead

since the circuit as triplicated. If all the redundant modules

are hot the design suffers also from higher power

dissipation and increased temperature. TMR technique is

used in many researches [21] [22] [23] [24].

(a) BasicTMR for Moduled System.

(b) TMR with Repeated Voter for Moduled system.

Figure 8: TMR for Module System.

 Duplication with Comparison (DWC): DWC is used to

reduce the area overhead in the TMR. The circuit is

duplicated and the output is compared as shown in Figure

9. DWC can only detect the error without correcting it, so a

recovery technique must be used beside it to correct the

fault.A common recovery technique used in companion

with DWC is the on-demand scrubbing. Work in [25] uses

the DWC technique along with dynamic partial

reconfiguration to increase the reliability of the design.

Figure 9: DWC Implementation.

 Standby Sparing: One of the modules is used to provide the

output, and the remaining modules work as spares (active

or passive). An error detection technique is used to identify

faulty modules and a fault-free module is selected to

provide the output as shown in Figure 10[26].

 Pair and Spare: This technique combines DWC and

standby sparing. Two modules are online and compared as

in DWC, and any spare can replace either of the online

modules, as shown in Figure 11[27].

Figure 10: Standby Sparing Implementation.

IEEE#41458-ACCS'017&PEIT'017, Alexandria, Egypt

Figure 11: Pair and Spare Scheme.

 Self-Purging: The correct output is compared with the

output of each module to identify the faulty modules for

NMR with N>2 as shown in Figure 12[27].

Figure 12: Self-Purging Scheme.

The main drawback of error detection using hardware

redundancy is the area overhead. Also, it provides a limited

resolution to identify the faulty module unless using extra

logic for this purpose[9].

7.2.2 Time Redundancy

Time redundancy techniques rely on the advantage of the

transient fault by comparing the output signals at two different

moments. The output is latched at two or more different times,

where the clock edge of each latch is shifted by time das

shown in Figure 13. A comparator or a voter indicates the

occurrence of transient fault[20]. Time redundancy along with

DWC is used in [28].

The area overhead in time redundancy comes from the

added sample latches. Also, the performance is affected. The

performance penalty is given by clk+(N-1)d+tp, where

ddenotes the expected duration of the transient pulse , N is the

number of latched times and tp is the majority voter delay

[20].

Figure 13: Time Redundancy Implementation.

7.2.3 Information Redundancy

Information redundancy depends on the use of EDAC

(Error Detecting and Correcting Codes) by adding extra

bits.These bits help in detecting and localizing the errors, and

hence, correcting them using unique syndrome calculation.

The block diagram of EDAC is shown in Figure 14.

Information redundancy is mostly used to tolerate faults in

FSM (Finite State Machine) and the data stored in the BRAM

(Block RAM). There are many techniques to implement

EDAC. The most famous codes are:

 Parity bits: The simplest coding technique used, can be

implemented simply using XOR gates. It is rarely used

alone because it is weak[27].

 Hamming Codes: This code adds c check bits and can

detect multiple faults and may correct a smaller number of

faults depending on the hamming distance. The most

famous type is the single error correction/double detection

code[20] [27].

 Rectangular Codes: These codes require more

computations than Hamming codes, but it is suitable for

data stored as a matrix. Parity bits are generated for both

horizontal and vertical data. These codes are used in ABFT

(Algorithm-Based Fault Tolerance).

 Reed-Solomon Codes: used to detect/correct multiple

faults, but decoding and encoding circuits are very

complex compared to Hamming codes[20].

 Cyclic Redundancy Codes (CRC): Blocks of data get a

short check value attached to them, based on the remainder

of a polynomial division of the contents. On retrieval, these

calculation is repeated and, in the case the check values do

not match, corrective action can be taken against data

corruption. CRC is usually used in rollback scrubbing [29].

https://en.wikipedia.org/wiki/Polynomial_long_division

IEEE#41458-ACCS'017&PEIT'017, Alexandria, Egypt

Figure 14: Block Diagram of EDAC.

8. CONCLUSION

This paper has listed the main sources of faults in FPGA

systems. Both radiation and aging effects are explained

briefly. The presented survey showed different fault-tolerance

techniques that can be used to mitigate either permanent or

transient faults. There is no single mitigation technique that is

significantly better than the others. Thus, mixing between two

or more techniques maybe used for highly reliable systems.

REFERENCES

[

1]
S. S. Meshram and U. A. Belorkar, "Design Approach for Fault

Tolerance in FPGA Architecture," International Journal of VLSI design

& Communication Systems (VLSICS), vol. 2, no. 1, pp. 87-95, 2011.

[

2]

V. Dumitriu, L. Kirischian and V. Kirischian, "Run-Time Recovery

Mechanism for Transient and Permanent Hardware Faults Based on

Distributed, Self-organized Dynamic Partially Reconfigurable Systems,"

IEEE Transactions on Computers, vol. 65, no. 9, pp. 2835-2847, 08

September 2016.

[

3]

F. Kastensmidt and P. Rech, FPGAs and Parallel Architectures for

Aerospace Applications, Switzerland: Springer International Publishing,

2016.

[

4]

F. Siegle, T. Vladimirova, J. Ilstad and O. Emam, "Mitigation of

Radiation Effects in SRAM-based FPGAs for Space Applications," ACM

Computing Surveys (CSUR), vol. 47, no. 2, pp. 1-34, January 2015.

[

5]

S. Duzellier, "Radiation Effects on Electronic Eevices in Space,"

Aerospace Science and Technology, vol. 9, no. 1, pp. 93-99, January

2005.

[

6]

T. S. Reddy, J. Santosh and J. Prabhakar, "Fine-Grain Redundancy

Techniques for HighReliable SRAM FPGA`S in Space Environment: A

Brief Survey," International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering (IJAREEIE), vol. 3, no. 12,

pp. 14047-14051, December 2014.

[

7]

H. Quinn, "Radiation Effects in Reconfigurable FPGAs,"

Semiconductor Science and Technology, vol. 32, no. 4, 2017.

[

8]

H. Ziade, R. Ayoubi, R. Velazco and T. Idriss, "A New Fault

Injection Approach to Study the Impact of Bitflips in the Configuration

of SRAM-Based FPGAs," The International Arab Journal of

Information Technology, vol. 8, no. 2, pp. 155-162, April 2011.

[

9]

E. Stott, P. Sedcole and P. Y. Cheung, "Fault Tolerant Methods for

Reliability in FPGAs," in International Conference on Field

Programmable Logic and Applications FPL, Heidelberg, Germany,

2008.

[

10]

J. Hussein and G. Swift, "Mitigating Single-Event Upsets," Xilinx,

2015.

[

11]

R. Le, "Soft Error Mitigation Using Prioritized Essential Bits,"

Xilinx, 2012.

[

12]

Fault Management Handbook, Washington: NASA, 2012.

[

13]

B. Dobrucky, P. Sindler, J. Cuntala and A. Kondelova, "Increasing

of Reliability of FPGA Implemented Microcontroller Using the Error

Self Correcting Techniques," Journal of Communication and Computer,

vol. 12, pp. 219-227, 2015.

[

14]

S. Wichman, S. Adyha, S. Ahrens, R. Ambli, B. Alcorn, D. Connors

and D. Fay, "Partial Reconfiguration Across FPGAs," in Military and

Aerospace Applications of Reconfigurable Logic Devices and

Technologies (MAPLD), Washington, 2006.

[

15]

I. Herrera-Alzu and M. López-Vallejo, "Design Techniques for

Xilinx Virtex FPGA Configuration Memory Scrubbers," IEEE

Transactions on Nuclear Science, vol. 60, no. 1, pp. 376-385, 2013.

[

16]

Z. Zhao, D. Agiakatsikas, N. T. H. Nguyen, E. Cetin and O. Diessel,

"Fine-grained Module-based Error Recovery in FPGA-Based TMR

Systems," in Field-Programmable Technology (FPT), Xi'an China, 2016.

[

17]

L. Pereira-Santos, G. L. Nazar and L. Carro, "Exploring Redundancy

Granularities to Repair Real-Time FPGA-Based Systems,"

Microprocessors and Microsystems, vol. 51, pp. 264-274, 2017.

[

18]

G. L. Nazar, L. P. Santos and L. Carro, "Scrubbing Unit

Repositioning for Fast Error Repair in FPGAs," in Compilers,

Architecture and Synthesis for Embedded Systems (CASES), Montreal,

Canada, 2013.

[

19]

C. A. Sharma, A. Sarvi, A. Alzahrani and R. F. DeMara, "Self-

Healing Reconfigurable Logic Using Autonomous Group Testing,"

Microprocessors and Microsystems, vol. 37, no. 2, pp. 174-184, March

2013.

[

20]

F. Kastensmidt, L. Carro and R. Reis, Fault-Tolerance Techniques

for SRAM-Based FPGAS, Dordrecht: Spriger, 2006.

[

21]

S. C. Anjankar, M. T. Kolte, A. Pund, P. Kolte, A. Kumar, P.

Mankar and K. Ambhore, "FPGA Based Multiple Fault Tolerant and

Recoverable Technique Using Triple Modular Redundancy (FRTMR),"

in 7th International Conference on Communication, Computing and

Virtualization, 2016.

[

22]

S. C. Anjankar and M. T. Kolte, "Fault Tolerant and Correction

System Using Triple Modular Redundancy," International Journal of

Emerging Engineering Research and Technology, vol. 2, no. 2, pp. 187-

191, 2014.

[

23]

P. Balasubramanian, K. Prasad and N. E. Mastorakis, "A Fault

Tolerance Improved Majority Voter for TMR System," WSEAS

Transactions on Circuits and Systems, vol. 15, pp. 108-122, 2016.

[

24]

D. Shinghal and D. Chandra, "Design and Analysis of a Fault

Tolerant Microprocessor Based on Triple Modular Redundancy Using

VHDL," International Journal of Advances in Engineering &

Technology (IJAET), vol. 1, no. 1, pp. 21-27, March 2011.

[

25]

Q.-Z. Zhou, X. Xie, J.-C. Nan, Y.-L. Xie and S.-Y. Jiang, "Fault

Tolerant Reconfigurable System with Dual-Module Redundancy and

Dynamic Reconfiguration," Jouranl of Electronic Science and

Technology, vol. 9, no. 2, pp. 167-173, June 2011.

[A. Ejlali, B. M. Al-Hashimi and P. Eles, "Low-Energy Standby-

IEEE#41458-ACCS'017&PEIT'017, Alexandria, Egypt

26] Sparing for Hard," IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Ssystems, vol. 31, no. 3, pp. 329-342, March

2012.

[

27]

I. Koren and C. M. Krishna, Fault Tolerant Systems, London, UK:

Elsevier, 2007.

[

28]

V. Tiwari and P. S. Patwal, "Design and Analysis of Software Fault-

Tolerant Techniques for Softcore Processors in Reliable SRAM-Based

FPGA," International Journal of Computer Technology and

Applications, vol. 2, no. 6, pp. 1812-1819, December 2011.

[

29]

A. Ebrahim, T. Arslan and X. Iturbe, "On Enhancing the Reliability

of Internal Configuration Controllers in FPGAs," in Adaptive Hardware

and Systems (AHS), Leicester, UK, 2014.

